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Early abuse and anabolic androgenic steroids (AAS) both increase aggression. We assessed the behavioral and
neurochemical consequences of AAS, alone or in combination with social subjugation (SS), an animal model of
child abuse. On P26, gonadally intact male rats began SS consisting of daily pairings with an adult male for
2 weeks followed by daily injections of the AAS, testosterone on P40. As adults, males were tested for sexual
and aggressive behaviors towards females in various hormonal conditions and inter-male aggression in a
neutral setting using home or opponent bedding. Neurotransmitter levels were assessed using HPLC. Results
showed that AAS males displayed significantly more mounts toward sexually receptive, vaginally obstructed
females (OBS) and displayed significantly more threats towards ovariectomized females. SS males mounted
OBS females significantly less and were not aggressive toward females. The role of olfactory cues in a neutral
setting did not affect aggression regardless of treatment. AAS significantly increased brainstem DOPAC and
NE. SS decreased 5HIAA, DA, DOPAC, and NE in brainstem. 5HIAA was significantly increased in the prefrontal
cortex of all experimental groups. We conclude that AAS and SS differentially affect behavior towards females
as well as neurotransmitter levels.
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1. Introduction

Anabolic androgenic steroid (AAS) use among teenage males is a
major health concern because androgenic influences play a major role
in brain development as well as the expression of adaptive adult social
behaviors (Primus and Kellogg, 1990; Romeo, 2003; Sisk and Foster,
2004; Sisk et al., 2003; Spear, 2000). In animal models exposure to
AAS during adolescence alters both brain neurochemistry and adult
behavior patterns (Farrell and McGinnis, 2003; Keleta et al., 2007;
Kubala et al., 2008; McGinnis et al., 2002; Wesson and McGinnis,
2006). AAS increases aggression in mice (Martinez-Sanchis et al.,
1998), hamsters (Harrison et al., 2000; Melloni et al., 1997), and rats
(Breuer et al., 2001; Farrell and McGinnis, 2003; Feinberg et al., 1997;
Lumia et al., 1994; McGinnis et al., 2002;Wesson andMcGinnis, 2006)
as well as humans (Choi and Pope, 1994; Galligani et al., 1996; Perry
et al., 2003; Pope et al., 2000). Increased aggression towards women
by male AAS users has been reported (Choi and Pope, 1994). In
agreementwith the human data, increased aggression toward females
has been confirmed in a rat model of AAS use (Cunningham and
McGinnis, 2006, 2007). Interestingly, the AAS-induced aggressionwas
only displayed toward non-receptive (ovariectomized) females.
When females were sexually receptive, aggression was absent and
copulatory behavior was displayed.
An interesting parallel arises between adolescent AAS users and
abused children, as both display increased aggression toward males
(Connor et al., 2003; Lansford et al., 2002) and females (Wekerle et al.,
2001; 2009; Wolfe et al., 2001). Social subjugation (SS) has been used
as an animal model to assess the impact of early abuse on the
development and expression of adaptive social response patterns.
During SS, an animal is dominated by a larger conspecific male in
several encounters (Cunningham and McGinnis, 2008; Delville et al.,
1998; Ferris et al., 2005; Wommack and Delville, 2003; Wommack
et al., 2004). As often observed in abused children, male rats exposed
to SS prepubertally display increased aggression in adulthood
(Cunningham and McGinnis, 2008). Also, males who have been
abused in childhood are more likely to take AAS in adolescence
(Skarberg and Engstrom, 2007).

In rodent studies, exposure to AAS during adolescence has been
found to alter serotonin, but both increases and decreases have been
reported depending on the brain region. For example, AAS decreases
5-HT and its metabolite 5-HIAA in the hypothalamus (Keleta et al.,
2007; Kubala et al., 2008), medial amygdala (Grimes and Melloni,
2006), striatum (Keleta et al., 2007) and hippocampus (Bonson et al.,
1994). However, in the frontal cortex, AAS has been consistently
found to increase serotonin (Keleta et al., 2007; Kubala et al., 2008;
Kurling et al., 2005). These data support a role for serotonin in
modulating the effects of AAS.

AAS have also been found to increase dopamine (DA) and its
metabolite, DOPAC, in the anterior hypothalamus (Ricci et al., 2009)
the striatum (Kindlundh et al., 2002, 2004) and the cortex (Thiblin
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et al., 1999; Kurling et al., 2005). The effect of AAS on NE is currently
unknown.

The effect of SS on brain neurochemistry has not been previously
investigated. Since AAS users may have a childhood background of
abuse (Skarberg and Engstrom, 2007), the impact of combining SS and
AAS on serotonin and dopamine levels may provide insight into the
long-lasting effects of periadolescent experiences on brain
neurochemistry.

The overall goal of this study was to determine the influence of
prepubertal SS, and adolescent AAS, alone or in combination, on
behavior and brain neurochemistry. Since both AAS and SS increase
aggression toward males, we tested the hypothesis that aggressive
responses and changes in neurochemistry would be comparable. First,
we examined whether prepubertal SS would increase aggression
toward females as previously shown following adolescent AAS
exposure. Second, we determined whether olfactory cues would be
a sufficient to evoke inter-male aggression in SS and AASmales. Third,
wemeasured serotonin, dopamine and norepinephrine following AAS
and SS exposure to determine if neurochemical changes were similar
to those previously found in AAS-treated males. The results indicated
that SS and AAS probably increase inter-male aggression via different
underlying mechanisms.

2. Materials and methods

2.1. Animals

All animals were Long-Evans rats obtained from Charles River
Laboratory (Wilmington, MA). Animals in experimental groups were
25 days of age upon arrival. A separate group of larger (at least 350 g)
adult males were used as subjugators. An additional group of adult
males in the same age and weight range as the experimental animals
served as opponents in aggression tests. All males were gonadally
intact. Females used as stimulus animals were ovariectomized as
previously described (Farrell and McGinnis, 2004). The animals were
housed in a temperature-controlled room (23 °C) in standard
Plexiglas cages (25×20×18 cm) with their bedding changed twice
a week. Experimental and opponent males were individually housed,
while stimulus females were housed two per cage. Food and water
were provided ad libitum. Lights weremaintained on a 12:12 reversed
light/dark cycle with lights off at 1200 h. Body weights were taken
weekly. All drugs used in this study were obtained from Sigma, St.
Louis, MO, USA. Experimental procedures were performed in
accordance with the National Institute of Health's guidelines for
animal care and use. Experimental protocols were reviewed and
approved by the UTHSCSA Institutional Animal Care and Use
Committee.

2.2. Experimental design

Experimental males were matched for body weight and randomly
assigned to one of four treatment groups: social subjugation (SS;
n=8); testosterone (AAS; n=8); social subjugation plus testosterone
(AAS+SS; n=8), or control (n=8). Social subjugation (or control
condition) was initiated on P26 and continued until puberty (P40).
AAS (or vehicle control) treatment began on P40 and continued
SS AAS 
P26           P40                 P69                    P71                   P76                    P7

Behavior test     Behavior test     Behavior test     Behavi
OVX females    E+P females      OBS females     OVX f

w/prov

Fig. 1. Experimental timeline schematically depicting the schedule of social subjugation (SS)
collection. P = postnatal day.
5 days/week until the end of the experiment. Weekly behavioral tests
began on P69 (see Fig. 1). These tests consisted of four sexual behavior
and aggression tests with females in different hormonal conditions
and two tests for inter-male aggression in a neutral cage with home or
opponent male bedding in different conditions (with and without
physical provocation). All behavioral tests were conducted during the
dark phase of the light cycle under dim red light. On P92 experimental
animals were sacrificed by decapitation for HPLC analysis.

2.3. Social subjugation

The animals underwent social subjugation during the dark phase
of the light cycle for 10 min/day, 5 days/week from P26 to P40. SS and
AAS+SS animals were individually placed into the home cage of a
subjugator, a larger adult male. Controls and males receiving AAS
alone were placed into a novel cage with fresh bedding (Bastida et al.,
2009; Cunningham and McGinnis, 2008; Delville et al., 1998; Ferris
et al., 2005; Wommack and Delville, 2003). Each test of social sub-
jugation was observed to ensure that the subjugator exhibited acts of
aggression such as dominance postures and mounts (Cunningham
andMcGinnis, 2008). The subjugator males typically do not injure the
experimental animals.

2.4. AAS exposure

AAS exposure was initiated on P40, the time of preputial sepa-
ration (Korenbrot et al., 1977), which is used as an indicator for the
onset of puberty. AAS and AAS+SS males began receiving sc
injections of testosterone propionate at a dosage of 5 mg/kg dissolved
in polyethylene glycol 200 (PEG-200) while control and SS males
received vehicle injections (Cunningham and McGinnis, 2006; Farrell
and McGinnis, 2003, 2004; McGinnis et al., 2002; Wesson and
McGinnis, 2006).

2.5. Social interactions with females

Males were paired with females under four different conditions.
All four groupswere tested on the same day for each condition. Males
were tested for both sexual and aggressive behaviors with females in
a 25×20×18 cm glass chamber over a 10 min test period (Cunning-
ham andMcGinnis, 2006). In the first test each male was paired with
an ovariectomized, non-receptive female (OVX). For the second test
each male was paired with a different sexually receptive female that
had received sc implantation of one silastic capsule (1.47 mm i.d.×
1.96 mm o.d.×5 mm length, Dow Corning, Midland, MI) containing
50% crystalline estradiol benzoate followed on the day of testingwith
a sc injection of 500 μg progesterone 4 h prior to the start of the test
(E+P). The third and fourth tests were designed to examine the
males' response to females under conditions that would elicit a state
of frustration. For the third test, experimental animals were tested
with E+P females whose vaginas were obstructed with duct tape to
prevent intromissions (OBS group) (Cunningham and McGinnis,
2007). Finally, in the fourth test the males were tested with OVX
females while being physically provoked (OVX+Prov). Physical
provocation was administered by tail pinch with forceps to the distal
end of the experimental animal's tail once every minute for the
Exposure
8                    P83&P85                        P90&P92                      P93      

or test     Inter-male aggression     Inter-male aggression     Brain tissue
emales    w/o provocation              w/provocation                collection
ocation

and anabolic androgenic steroids (AAS) injections, behavioral testing, and brain tissue
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duration of the 10 min test (Cunningham andMcGinnis, 2006; Farrell
and McGinnis, 2004; Smith et al., 1997).

For all tests with females, both sexual and aggressive behaviors
were recorded. Sexual behaviors scored included mount and intro-
mission frequencies, mount and intromission latencies, and ejacula-
tions (Cunningham and McGinnis, 2007; Farrell and McGinnis, 2004;
Wesson and McGinnis, 2006). Aggressive behaviors towards females
consisted of attacks, threats, boxing, and mounts that were not
associated with intromissions or ejaculations (Barfield et al., 1972;
Cunningham and McGinnis, 2007).

2.6. Aggression tests with males

All males were tested using a modified resident-intruder paradigm
to assess the role of olfactory cues in a neutral setting in facilitating
aggression. Experimental and opponent males were individually
housed and their bedding was not changed for seven to ten days
prior to testing to facilitate home cage olfactory recognition (Barfield
et al., 1972; Breuer et al., 2001; Wesson and McGinnis, 2006). The
aggression tests were conducted in a neutral glass chamber (25×20×
18 cm) that neither the experimental male nor the intruder male
had ever occupied. To create the olfactory milieu of the resident or
intruder male, the soiled bedding of either the experimental or op-
ponent animal was placed on the floor of the neutral test cage. The
animals were tested twice without provocation, once with their home
bedding and once with the opponent's home bedding. The order of
bedding presentation was counterbalanced to control for order effects
that might influence the level of aggression. The following week the
animals were tested for aggression with physical provocation, also
with the bedding of the experiment animal and the home bedding,
and the bedding conditions counterbalanced. Physical provocation
was administered to the experimental animal as described earlier
(Cunningham and McGinnis, 2006; McGinnis et al., 2002). Aggression
tests were videotaped for subsequent analysis (Breuer et al., 2001).
Behaviors were scored only when they were initiated by the
experimental male (Cunningham and McGinnis, 2007). Aggressive
behaviors included mounts, threats, dominant postures, and attacks
(Farrell and McGinnis, 2004). These behaviors were combined to
derive a composite aggression score (Cunningham and McGinnis,
2007; Farrell and McGinnis, 2004; Nomura et al., 2002; Wesson and
McGinnis, 2006).

2.7. Determination of DA, 5-HT, and metabolites

On P92 experimental animals were sacrificed by decapitation.
Brains were quickly removed and placed in a freezing chamber until
dissected. The brain areas selected for HPLC analysis were the
striatum, cortex, hippocampus, hypothalamus, and brain stem and
dissected as described previously (Keleta et al., 2007). The striatum
included the caudate putamen from the beginning of the corpus
callosum to the optic chiasm. For the cortex, 2 mm of the frontal pole
anterior to the beginning of the corpus callosum. The hypothalamus
included from the optic chiasm to just posterior to the mammillary
bodies. The brainstem contained the entire brainstem anterior to the
superior colliculus to 0.5 mm posterior to the inferior colliculus. These
brain regions were selected to determine serotonin function in areas
specific to gonadal steroid mechanisms related to androgen-dependent
behaviors (hypothalamus, hippocampus and frontal cortex) and in the
cell body (brainstem) region (Keleta et al., 2007). All tissue samples
were placed into plastic vials on dry ice then stored at −80 °C until
processed and analyzed. For HPLC, frozen brain tissue samples were
homogenized in ice-cold 0.1 M perchloric Acid (HCLO4) containing
10 ng/mL DHBA, an internal standard. Samples were placed on ice for
two minutes, and then centrifuged at 15,294×g for 2 min (Eppendorf
5810 centrifuge). An aliquot of the supernatant was filtered through a
0.45-mm Millipore Cor. (Billerica, MA) microcentrifuge filter and then
centrifuged at 12,000 rpm for 1 min. Norepinephrine, 5-HT, 5HIAA, DA,
and DOPAC were separated using a high-performance liquid chroma-
tography (HPLC) system that consisted of a dual-piston pump (Solvent
Delivery Module-Model 580), a refrigerated autosampler (Model 540),
and a Coulochem II (Model 500; all ESA Biosciences Inc., Chelmsford,
MA) dual-potentiostat electrochemical detector. Data collection and
system control were performed using a PC-based data station (Model
500). Separation of catecholamines andmetaboliteswas achieved on an
HR-80 reverse-phase C18 column (4.6×80 mm). Analytes were
detected on a dual-electrode analytical cell (Model 5011A) with the
first electrode (E1) set at−50 mV and the second electrode (E2) set to
oxidize catecholamines and its metabolites at +280 mV. A guard cell
(Model 5020) was placed between the pump and the autosampler at a
potential of+350 mV to oxidize contaminants in themobile phase. The
mobile phase consisted of 75 mM sodium phosphate monobasic,
4.0 mM heptanesulfonic acid, 25 μM EDTA, 0.01% triethylamine, and
6% acetonitrile (v/v). The pH of the mobile phase was adjusted to 3.1
with phosphoric acid after the addition of organicmodifiers. Themobile
phase was passed through the system at 1.0 mL/min. All analyses were
performed at 27 °C and in triplicates. N=8 for all brain regions in each
group except in the brainstem for NE (n=4).

2.8. Statistical analyses

All data were analyzed using StatView v5.0 (Abacus Concepts Inc.,
Berkeley California). Separate one-way ANOVA's were conducted for
each test condition to identify differences between the four treatment
groups. This was followed by Fisher's PLSD for post-hoc comparisons
for each behavior test and for each brain region and neurotransmitter
assessed. Values of pb0.05 were viewed as significant.

3. Results

Fig. 2 shows the mean mount frequencies in pairings with E+P,
OBS, OVX or OVX+Prov females. AAS males mounted significantly
more when paired with sexually receptive females with obstructed
vaginas (OBS) as compared to controls (F(3,28)=2.81, pb0.05). SS
males mounted significantly less than controls when paired with the
OBS females (F(3,28)=2.81, pb0.05).

Fig. 2 also depicts the mean mount latencies for males in each
of the four treatment groups. There was no significant effect of
either AAS or SS on mount latency when the animals were tested
with receptive females whether the vaginas were obstructed or not
(E+P and OBS). In the absence of provocation, none of the males
mounted the OVX females. When provoked, AAS males displayed a
significant decrease in mount latency toward OVX+Prov females
compared to control (F(3,28)=5.13, pb0.02) and SS males F(3,28)=
5.13, pb0.002). The combination of AAS+SS significantly decreased
mount latency when compared to SS alone (F(3,28)=5.13, pb0.005),
but did not quite reach statistical significance when compared to
controls (pb0.06).

Males displayed intromissions and ejaculations only when paired
with the sexually receptive (E+P) females and there were no sig-
nificant differences between groups (data not shown). There was no
significant difference between groups in any of the tests with EB+
OBS, OVX or OVX+Prov females for intromission frequencies, intro-
mission latencies, or ejaculations as intromissions and ejaculations
were not exhibited.

There were no significant differences in aggression toward females
for boxing or attacks, but there was an effect on threats. Fig. 3 shows
the mean number of threats exhibited towards E+P, OBS, OVX and
OVX+Prov females. There was a significant increase in the number of
threats by AAS males towards OVX females as compared to all other
groups (AAS vs control: F(3,28)=4.58, pb0.003); AAS vs SS (F(3,28)=
4.58, pb0.003); and AAS vs AAS+SS (F(3,28)=4.58, pb0.02),. There
were no significant differences between any other groups during the
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Fig. 2. Mean mount frequencies (mean±SEM) and mean mount latencies (mean±SEM) in 10 min tests with females. Socially subjugated males (SS), anabolic androgenic steroid
males (AAS), AAS+SS males, and control males were tested with sexually receptive females (E+P), vagina obstructed sexually receptive females (OBS), ovariectomized females
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E+P, OBS, or OVX+Prov as no threats were exhibited during these
tests.

For inter-male aggression in a neutral cage, there were no signif-
icant differences between groups in individual aggressive behaviors
or composite aggression scores in the presence of either the exper-
imental or opponent home bedding (Table 1). However, there was an
overall significant increase (pb0.001) in aggression following prov-
ocation compared to the no provocation condition indicating that
provocation induces aggression in a previously non-threatening situ-
ation for all groups.

Fig. 4 illustrates the levels of 5-HT, 5HIAA, DA, DOPAC and NE in
the brainstem, prefrontal cortex, and striatum for each of the
treatment groups. In the prefrontal cortex, a significant increase in
5HIAA was found for all groups compared to controls: AAS vs control
(F(3,27)=3.25, pb0.03), SS vs control (F(3,27)=3.25, pb0.008), and
AAS+SS vs control (F(3,27)=3.25, pb0.02). There were no signif-
icant differences between groups in the prefrontal cortex for 5-HT, DA,
DOPAC or NE. There were no significant differences in 5-HT, 5-HIAA,
DA, or DOPAC in the striatum. However, there was a significant
decrease in striatal NE for SS males compared to controls (F(3,25)=
2.95, pb0.03). For the brainstem, AAS treatment resulted in a signif-
icant increase in DOPAC (F(3,25)=5.85, pb0.04), and NE (F(3,12)=
4.17, pb0.02) compared to controls. The combination of AAS+SS
significantly increased DOPAC compared to controls (F(3,25)=5.85,
0
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Fig. 3.Mean number of threats (mean±SEM) in tests with females. Socially subjugated
males (SS), anabolic androgenic steroid males (AAS), AAS+SSmales, and control males
were tested with sexually receptive females (E+P), vagina obstructed sexually
receptive females (OBS), ovariectomized females (OVX), and ovariectomized females
with physical provocation of the experimental animal (OVX+Prov). * = significant
increase compared to controls (pb0.05). n=8 for all groups.
pb0.05). Social subjugation (SS) significantly decreased the levels of
all neurotransmitters measured in brainstem: 5-HT (F(3,16)=3.11,
pb0.05); 5-HIAA (F(3,27)=4.30, pb0.02); DA (F(3,26)=3.44,
pb0.02); DOPAC (F(3,25)=5.85, pb0.01), and NE (F(3,25)=2.95,
pb0.03) compared to controls. No significant differences were found
in the hippocampus or hypothalamus for any treatment group (data
not shown).

Fig. 5 shows the mean body weights for each of the four treatment
groups (mean±S.E.M.). Compared to controls, AAS, SS, and AAS+SS
all had significantly lower body weights on P54, P61, P68 and P75
(pb0.05), and for AAS and SS on P82 (pb0.05).

4. Discussion

This study examined the impact of prepubertal SS and adolescent
AAS exposure on aggression toward females. Both human and animal
studies have found that AAS exposure increases aggression toward
females (Choi and Pope, 1994; Cunningham and McGinnis, 2006,
2007). Animal studies have reported that AAS exposure increases
aggression toward females, but this is mediated in part by the
hormonal status of the female, frustration (thwarting the opportunity
to achieve ejaculation), and physical provocation. We found that AAS
males displayed sexual behavior and no aggression toward sexually
receptive females supporting previous findings (Cunningham and
McGinnis, 2006, 2007). AAS also induced a significant increase in
sexual mounting toward receptive females with vaginal obstruction
(OBS), which is also consistent with prior results (Cunningham and
McGinnis, 2007). Frustration has been defined as an emotional state
Table 1
Inter-male aggression.

No provocation Provocation

Home
bedding

Opponent
bedding

Home
bedding

Opponent
bedding

(n=8) (n=8) (n=8) (n=8)

AAS 3.75±1.60 2.38±1.16 6.75±2.12 3.25±1.25
AAS+SS 3.13±1.14 2.75±1.41 7.13±3.55 5.50±1.97
SS 3.25±1.29 3.13±3.57 10.4±3.56 5.25±1.93
Control 4.00±1.74 3.88±2.42 11.5±1.76 10.0±2.33

Neutral setting with home or opponent bedding on inter-male aggression. Composite
aggression scores are expressed as means±SEM for socially subjugated males (SS),
anabolic androgenic steroid males (AAS), AAS+SSmales, and control males. There was
an overall significant increase (pb0.001) in aggression following provocation compared
to no provocation.
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or condition that results when a goal is thwarted or blocked, pre-
venting gratification (Amsel, 1990). Accordingly, the inability to
achieve the goal, in this case ejaculation, should induce frustration-
induced aggression. However, in some situations, the inability to fulfill
the goal or consummate an act induces a state of persistence (Amsel
and Roussel, 1952; Azrin et al., 1966; Cunningham and McGinnis,
2007; Harrell, 1973; Matzel, 1984). These data support the view that
when females emit hormonal and behavioral cues indicating sexual
receptivity, (proceptivity and attraction) withholding the reward
induces persistence, rather than aggression (Beach, 1976). AAS-
treated males did not display either intromissions or ejaculations
toward non-receptive (OVX) females and, in fact, displayed aggres-
sion. AAS males exhibited significantly more threats toward non-
receptive females than control males, which are consistent with
previous reports (Cunningham and McGinnis, 2006, 2007). These
results strengthen the finding that AAS increases aggression towards
females that are either not sexually receptive or are prevented from
performing normal sexual behavior.

Males abused in childhood are reported to be aggressive toward
women (Wekerle et al., 2001, 2009; Wolfe et al., 2001). Contrary, to
this report in humans, we found that SS males were not aggressive in
any encounter with females and, in fact, when placed with non-
receptive females, SS males were the only group that did not display
threats. Furthermore, males receiving the combination of AAS+SS
failed to display aggressive behaviors towards females. This is the first
study to examine social subjugation, alone or in combination with
AAS, on aggression towards females in different hormonal conditions.
It appears that early social subjugation does not increase aggression
toward females.

In male hamsters, SS during adolescence decreased the latency to
mount sexually receptive females (Ferris et al., 2005). We found no
effect of SS on sexual behavior toward sexually receptive females.
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There was, however, a significant decrease in mount rate toward non-
receptive females as well as an increase in mount latency when tested
with OVX females in the provocation condition. Sexual behavior
towards females was not affected by the combination of AAS+SS.
Taken together, these data suggest that early social subjugation may
decrease the likelihood to copulate under certain conditions.

The role of olfactory cues in the elicitation of aggression in SS and
AAS male rats was examined by measuring aggression in a neutral
cage in the presence of the experimental or opponent home bedding.
We predicted that both SS and AAS males would display elevated
levels of aggression in the presence of their home bedding and in the
presence of the opponent's home bedding. This is based on prior
studies in both pubertal and adult AAS-treat rats (Breuer et al., 2001;
Farrell and McGinnis, 2003; McGinnis et al., 2002) showing that AAS-
treated males displayed enhanced aggression when tested in their
home cage and in their opponent's home cage, but not in a neutral
cage. AAS males tested in a neutral cage with clean bedding exhibited
levels of aggression that were similar to gonadally intact vehicle
control males (Breuer et al., 2001). The current study shows that
olfactory cues are not sufficient to elevate aggression following either
AAS or SS alone or in combination. This was demonstrated by the
finding that neither the presence of experimental nor opponent
animal's home cage bedding elicited aggression when the encounter
occurred in a neutral cage. Therefore, the home cage itself may be a
critical factor for eliciting aggression.

It has previously been demonstrated that both AAS and SS expo-
sures increase inter-male aggression (Breuer et al., 2001; Cunningham
and McGinnis, 2008; Delville et al., 1998; Farrell and McGinnis, 2003;
Feinberg et al., 1997; Ferris et al., 2005; Harrison et al., 2000; Lumia
et al., 1994; Martinez-Sanchis et al., 1998; Melloni et al., 1997;
McGinnis et al., 2002; Wesson and McGinnis, 2006). Since aggression
is thought to be mediated in part by serotonin, we hypothesized that
AAS and SS would have similar effects on serotonin levels. AAS
significantly reduces 5-HT levels in the striatum of rats (Keleta et al.,
2007), medial amygdala in hamsters (Grimes and Melloni, 2006) and
hippocampus of mice (Bonson et al., 1994). However, in the current
study, AAS had no effect on 5-HT. The differences in results may be
attributed to variations in experimental methodologies, different
HPLC procedures and species differences. We found a significant in-
crease in 5-HIAA in the prefrontal cortex in all groups (AAS, SS and
AAS+SS) compared to controls, suggesting increased turnover in
5-HT. This is generally consistent with previous reports of an
increase in 5-HT in the prefrontal cortex (Keleta et al., 2007; Kubala
et al., 2008) and suggest a potential role of 5-HT in the prefrontal
cortex inmediating the effects of AAS on a host of affective behaviors.
In contrast to AAS, we found that SS significantly decreased
brainstem 5-HT levels. In a study on hamsters, SS increased 5-HT
varicosities in the anterior hypothalamus (Delville et al., 1998), but
we found no effect of SS on 5-HT in the hypothalamus. No other
effects of AAS or SS on 5-HT levels were found.

Although our primary focus was on serotonin, by using HPLC we
were also able to assess DA, DOPAC and NE levels in the brain. We
found that AAS significantly increased DOPAC and NE in the
brainstem. This is consistent with previous reports that AAS increases
DA function (Kindlundh et al., 2002; Kindlundh et al., 2004; Ricci et al.,
2009). Taken together, these data suggest a possible role for altered
dopaminergic activity in modulating the behavioral effects of AAS. In
contrast to AAS, social subjugation resulted in a ubiquitous decrease in
brainstem DA, DOPAC and NE. Overall, our results suggest that the
early experience of social subjugation may have long-lasting reper-
cussions on brain neurochemistry. Since these measures were taken
in adulthood, this suggests that early hormonal or social challenges
may reorganize neurotransmitter function selectively and thereby
induce changes in adult social behavior patterns.

AAS, SS, and AAS+SS males weighed significantly less than
control males beginning at week 5, which is consistent with previous
findings (Cunningham and McGinnis, 2008; Farrell and McGinnis,
2003; Feinberg et al., 1997; Gentry and Wade, 1976; Lumia et al.,
1994; Wesson and McGinnis, 2006). The effect of SS on body weight
was varied. SS reportedly increases body weight in hamsters (Delville
et al., 1998) but not rats (Cunningham and McGinnis, 2006). In the
current study, body weights of SS rats were significantly lower than
controls four weeks after SS was initiated and two weeks after AAS
administration began. This needs further investigation.

Basedonourfinding that bothAAS andSS increase aggression toward
males, we hypothesized that SS andAASmaleswould display aggression
towards females. The AAS-induced increase in aggression towards
females was consistent with our previous finding (Cunningham and
McGinnis, 2006). However, social subjugation had a clear inhibitory
effect on both sexual and aggressive behaviors toward females. This was
unexpected and indicates that there are marked differences in the
behavioral effects of the early experience of SS and adolescent AAS
exposure.Weoriginally hypothesized that prepubertal SSwould escalate
aggression induced by adolescent exposure to AAS, and it does not. In
fact, there may be a tendency for AAS to counter the effects of SS. This
may reflect the powerful influence of androgens on behavior, rather
than a specific interaction with preexisting experiences. Given the
importance of olfactory cues in mediating social behaviors in rats,
we hypothesized that both AAS and SS would increase inter-male
aggression in a neutral cage with home bedding. However, our
results show that olfactory cues from either the animal's home
bedding or the opponent's home bedding are not sufficient to induce
aggression. Thus, the home cage itself plays an essential role in the
modulation of AAS and SS induced aggression. Finally, we hypoth-
esized that the changes in neurochemistry between AAS and SSmales
would be similar. In fact, they had little in common. Social sub-
jugation and AAS both increased cortical serotonin levels, but only SS
resulted in a significant decrease in all neurotransmitter measures in
the brainstem. Overall, our results indicate that both adolescent AAS
exposure and the early experience of social subjugation selectively
alter brain neurochemistry and this influences behavior in adult-
hood. However, the substantial differences in behavior and brain
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neurochemistry suggest that the underlying neural mechanismsmay
be different.
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